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Highly specular carbon nanotube absorbers
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Specular black materials have important applications, such as in absolute cryogenic radiometers,
space-borne spectroradiometers, and some energy conversion devices. While vertically aligned
carbon nanotubes (VACNT) can have close-to-unity absorptance, so far the reported reflection has
been essentially diffuse. This letter describes a highly specular black absorber made of VACNT.
Both the bidirectional reflectance distribution function and specular reflectance were measured at
the wavelength A=635 nm using a laser scatterometer. The ordinary and extraordinary optical
constants were obtained by fitting the specular reflectance, calculated from modified reflectance
formulae for light incident from air to a uniaxial medium, considering surface roughness.
Furthermore, the absorptance at A\ =635 nm was shown to be 0.994 = (0.002, based on the measured
directional-hemispherical reflectance. © 2010 American Institute of Physics.

[doi:10.1063/1.3502597]

Black materials have numerous applications, e.g., effi-
cient absorbers or emitters for energy conversion, stray light
shields and detector coatings in optical systems, and radiom-
eters or sensors in space-borne infrared systems.l_9 High ab-
sorptance can be achieved using vertically aligned carbon
nanotubes (VACNT) due to their low effective refractive
index.'®'® There are two types of black surfaces: highly
specular or glossy and nearly diffuse or matte. In certain
applications, such as blackbody cavities for absolute radiom-
etry, radiation thermometry, and baffle desi_%n, specular black
is often preferred over diffuse black.**! Furthermore, to
better understand the effective optical constants, samples
with relatively smooth surfaces are desirable. Thus far the
reported CNT arrays with high absorptance are all diffuse
like, due to surface roughness and other inhomo-
geneity.loflz’lg’19 This letter reports an optical study of
VACNT with high absorptance and specular reflection.

Multiwall VACNT specimens were synthesized on a
100-mm-diameter Si wafer using a thermal chemical vapor
deposition method. The catalysts were made by coating a
trilayer of 30 nm Ti, 10 nm Al, and 3 nm Fe in sequence.
Process gases of C,H, and H, were used with different
flow rates in a N, carrier gas. During CNT growth, the
substrate temperature was 750 °C and the growth pressure
was 70 kPa. Based on scanning electron microscopy (SEM)
images, the array height was determined to be
(166+16) um. The surface area of the substrate
and the weight of CNTs scraped from the substrate were
measured to estimate the array density, which was
(0.067+0.010) g/cm?. Hence, the volume fraction was
calculated to be approximately 3% using the graphite density
of 2.2 g/cm?® for CNTs. More discussions on the fabrication
and characterization were presented elsewhere.”’ The SEM
images are depicted in Fig. 1. Figure 1(c) with low magnifi-
cation suggests that the CNTs are highly aligned with a uni-
form height. The high-resolution image shown in Fig. 1(a)
demonstrates good alignment near the tip. Figure 1(b) was
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taken from the middle region and some bending and en-
tanglement of tubes can be seen. The sample surface appears
shiny and displays different colors at grazing angles. This
may be due to interference and diffraction effects caused by
surface roughness, tip scattering, and optical anisotropy,
though the exact reason needs further investigation. Atomic
force microscopy (AFM) was used to obtain the surface pro-
file of the CNT array, and the rms roughness was oy,
=57 nm with a scanning area of 10X 10 um?.

FIG. 1. (Color online) SEM images of the CNT array: (a) top region; (b)
middle region; (c) entire CNT layer, the average height is 166 um.

© 2010 American Institute of Physics
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FIG. 2. (Color online) Measured BRDFs of the specular CNT array at
N=635 nm for different incidence angles: (a) s polarization; (b) p
polarization.

A laser scatterometer was used to measured the bidirec-
tional reflectance distribution function (BRDF), defined as
the ratio of the reflected radiance to the incident irradiance,
with a diode laser of A=635 nm.? During the measurement,
the laser beam was linearly polarized before reaching the
sample. For in-plane BRDF measurements, the sample and a
silicon detector were rotated independently along the same
axis to vary the angles of incidence 6 and reflection (or
scattering) 6, individually. The detection solid angle was
Aw,=1.84X107* sr, resulting in a half cone angle of 0.45°
to resolve the specular peak and angular distributions. Pre-
cautions were applied to reduce stray light and to improve
the signal-to-noise ratio for low-level measurements.>

The BRDF measurement results are shown in Fig. 2, in
which the ordinate is the product BRDF X cos 6,, often called
the cosine corrected BRDF, which is proportional to the
power received by the detector. Also, the cosine corrected
BRDF is proportional to the power that the detector received
for given incidence power and solid angle. Each curve cor-
responds to a fixed @, for individual polarization, while 6, is
varied at an increment of 5°, except around the specular peak
where the interval is 0.2°. For normal incidence, the BRDF
exhibits symmetry on both sides and the average is used to
present 6, from 3° to 80°. Within 3° scattering angle, the
BRDF could not be measured because the detector would
block the incoming beam. To resolve the specular peak at
normal incidence, 6 was set to 4° and the specular peak was
shifted by 4° in 6, to match up with the off-peak BRDF at

Appl. Phys. Lett. 97, 163116 (2010)

100
Marks = Measurement
Curves = Calculation
10" E . E
c [ s polarization 7
I a
© 102 \,/’“/ 4
= E T
T e
5 r A =635nm
5 10°- - E
o E ¢ =52nm
o . . ms
c% p polarization
10 - 4
A
Brewster angle
10-5 L L L L L | L L 1 L s | L L n L
0 30 60 90

Incidence angle, 6, (deg)

FIG. 3. (Color online) Measured and calculated (with best fitted parameters)
specular reflectance vs incidence angle.

6,=0°. The uncertainty in the BRDF is estimated to be 10%
near the specular peak when BRDF X cos 6, is about 10 sr™!,
but increases to 40% when the corrected BRDF is less than
0.001 sr! due to low signal-to-noise ratio and stray light.

From Fig. 2, very high and sharp specular peaks exist for
all incidence angles and polarizations. The corrected BRDF
drops for about five orders of magnitude away from the peak.
The width and sharpness for this CNT sample are compa-
rable with those measured for Chemglaze Z302, commonly
used in high-accuracy radiometers.”* However, the measured
BRDF away from the specular peak is two to four times
lower than that of Chemglaze 72302, suggesting that the CNT
array has a lower directional-hemispherical reflectance (Rg,)
or higher absorptance. Also, the peak magnitudes are higher
for s polarization than for p polarization at #,=30° and 60°;
this is consistent with the reflection characteristics (i.e.,
Fresnel reflection) for a smooth interface. The BRDF peak is
the lowest for p polarization at #,=30°, because it is close to
the Brewster angle to be discussed later.

The specular reflectance was measured with the same
instrument by setting .= 6; based on the ratio of the reflected
signal to the incident signal. The laser beam diameter was
approximately 3 mm, and the detector aperture was 8 mm in
diameter to fully capture the specular reflection. The mea-
surements were taken at various incidence angles from 5° to
80° with an interval of 5°. The measurements (marks) and
calculation (curves) are shown in Fig. 3. While the specular
reflectance increases monotonically with 6 for s polariza-
tion, it reaches a minimum at the Brewster angle of 44° for p
polarization. Notice that the Brewster angle between two iso-
tropic media must be greater than 45° for incidence from the
optically rarer medium. At the Brewster angle, the specular
reflectance can be as small as 0.0001. The CNT array may be
treated as an effective uniaxial medium, whose optical con-
stants are 1(70:n(,+iko for ordinary rays and ﬁe:neﬂ'ke for
extraordinary rays.

In order to determine the effective ﬁ(, and ﬁe, the reflec-
tance for incidence from air to a uniaxial medium is calcu-
lated using the following expressions:24 »

cos 6, — \1'\?3 —sin® 6,
R = C

s ~
cos 6, — \/Ng —sin’ 6,

¢ for s polarization, (1)
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ﬁoﬁe cos 6, — Vﬁz —sin’ 6,

ﬁoﬁe cos 6, + \/]\72 —sin? 6,

and Rp = -

for p polarization, (2)

where Cy,=exp[-167707, cos’(6,)/\?] accounts for scatter-
ing loss and is called the specularity parameter.26’27

A least-squares method is applied to find the minimal
relative difference between the calculated and measured re-

flectance, as described by the objective function, as follows:

N
F= \/12 (Rcal,g' - Rmeas,i>2 (3)
Nj=1 Rmeas,j

where subscripts “cal” and “meas” stand for calculated and
measured, j is the data point for each incidence angle, and N
is the total number of measurements. The procedure begins

by taking 1\70 and o, as adjustable parameters to fit the

measured reflectance for s polarization. The fitted IVO and
Oums are used along with Eq. (2) to minimize the objective

function for p-polarized reflectance in order to obtain ﬁe.
The best fitting gives the smallest objective function, F
=7% for s polarization and F'=15% for p polarization. The
values obtained from fitting are n,=1.19%0.03, k,
=0.043£0.009, n,=1.33*+0.08, k.=0.03*=0.01, and oy,
=52%10 nm. The uncertainties are estimated based on a
10% variation for s polarization and 20% variation for p
polarization as the error bounds of the objective function.
Note that the fitted rms roughness agrees well with that mea-
sured from AFM (57 nm). The parameter Cy, increases with
0, and varies from 0.35 at 6,=0° to 0.90 at 6,=72° with
o.ms=52 nm. Based on the fitted extinction coefficients, the
radiation penetrate depth is less than 2 um, which is much
smaller than the average height of the CNTs. Hence, it is
appropriate to treat the CNT array as a semi-infinite medium.

The effective medium theory (EMT) has been used to
explain the low refractive index of CNT axrrays.zg_3 % While
the values of optical constants obtained by fitting fall in the
range predicted by EMT, it is difficult to quantitatively pre-

dict IVO and ﬁe using EMT because the misalignment and
nonuniformity of the CNT arrays and the lack of knowledge
of the inherent dielectric function and structure of the multi-
wall CNTs.'>!* While the polarization-dependent absorption
of CNTs has been studied for thin CNT arrays, the focus in
these studies was on the anisotropic absorption cross-section
without considering the surface roughness effect.®’?

The Ry, of the CNT array was also measured using an
integrating sphere. The measured Ry, at A=635 nm is
0.0058 =0.0018, which agrees reasonably well with
0.0064 £0.0026 as calculated by integrating the BRDF at
normal incidence, assuming isotropy in the azimuth direc-
tion. The absorptance, 1 —-Ry,, at 635 nm is estimated to be
0.994 with a relative uncertainty of 0.2%. Furthermore, the
absorptance varies from 0.995 to 0.997 at wavelengths from
400 to 1000 nm.”"

In summary, VACNT can be made as a highly specular
black material, as demonstrated by the sharp peaks in the
measured BRDF. It is shown that the CNT array can be con-
sidered as an effective homogeneous uniaxial medium. The
ordinary and extraordinary optical constants are quantita-
tively obtained from the measured specular reflectance for
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individual polarizations. The rms roughness obtained by fit-
ting the specular reflectance agrees with the AFM measure-
ment. This study not only suggests a method for determining
the anisotropic optical constants and surface roughness of
VACNT, but also opens up opportunities in applying VACNT
to absolute radiometry and space-borne spectrometry.
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